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ABSTRACT

The photoelectron asymmetry parameter 6 in LS-coupling is

obtained as an expansion into contributions from alternative angular

momentum transfers jt. The physical significance of this expansion of

a is shown to be that: 1) The electric dipole interaction transfers

to the atom a characteristic single angular momentum jt =Zo' where

Sis the photoelectron's initial orbital momentum, whereas 2) angular

momentum transfers jt o indicate the presence of anisotropic (i.e.,

term-dependent) interaction of the outgoing photoelectron with the

residual ion. For open-shell atoms the photoelectron-ion interaction

is generally anisotropic; photoelectron phase shifts and electric dipole

matrix elements depend on both the multiplet term of the residual ion

and the total orbital momentum of the ion-photoelectron final-state

channel. Consequently 8 depends on the term levels of the residual ion

and contains contributions from all allowed values of jt. These findings

contradict the independent particle model theory for 5, which ignores

final-state electron-ion interaction and to which our expressions reduce

in the limiting cases for which only jt = to is allowed, namely 1)

spherically symmetric atoms [e.g., closed-shell atoms] and 2) open-shell

atoms for which the electron-ion interaction is isotropic [e.g., very

light elements]. Numerical calculations of the asymmetry parameters and

partial cross sections for photoionization of atomic sulfur are presented

to illustrate the theory and to demonstrate the information on electron-

ion dynamics that can be obtained from the theoretical and experimental

study of 5 for open-shell atoms.
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I. INTRODUCTION

We obtain in this paper explicit expressions, in LS-coupling,

for the angular distribution of photoelectrons produced by electric

dipole ionization of an arbitrary open- or closed-shell atom. Our

treatment is based on the angular momentum transfer expansion for the

differential photoionization cross sectionI-3  and is intended to pro-

vide a theoretical framework that allows angular distribution calculations

comparable in accuracy to the best calculations of total photoionization

cross sections. The formulas we obtain show explicitly the influence

of anisotropic electron-ion interactions on the electron angular dis-

tribution and at the same time explain the success of the Cooper-Zare4

independent particle model theory in predicting such distributions for

5,6 7closed-shell atoms.5'6  For other than the lightest open-shell atoms,

however, we expect anisotropic electron-ion interactions to produce

photoelectron angular distributions that deviate significantly from the

predictions of the Cooper-Zare theory.

Our conclusions, described above, are contained implicitly in

the LS-coupling formulas for the angular distribution asymmetry
isk8 9  bJaosadBre 10

parameter obtained by Lipsky8 '9 and by Jacobs and Burke,1 whose

formulas are in principle equivalent to ours. The advantage of the

angular momentum transfer expansion employed in this paper, however,

is that such conclusions follow explicitly from our formulation.

Hartree-Fock calculations of the angular distribution of electrons
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photoionized from atomic sulfur, a typical open-shell atom, are

presented to illustrate our theoretical predictions.

In Section II we summarize the angular momentum transfer formula-

tion of the differential photoionization cross section. We also exhibit

how the angular momentum transfer probes anisotropic electron-ion

interactions. The formulas in this section depend on the amplitude for

photoionization with a particular value of the angular momentum transfer.

The form of this amplitude in LS-coupling, a main result of this paper,

is obtained in Section III. In Section IV we illustrate the theory by

calculating the photoelectron angular distribution of atomic sulfur.

Lastly, we discuss our conclusions in Section V. A brief report of

these results has been published elsewhere.11
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II. SUMMARY OF THE ANGULAR MOMENTUM TRANSFER FORMULATION

The ejection of an electron e- from an unpolarized atomic target

A by electric dipole interaction with an incident photon y may be

represented schematically as

A(JW ) + y(j =1, ~ =-l)4>A (J cr c) + e-[9sj, T =(-1) 1 (1)

The differential cross section for this process can be separated into

contributions characterized by alternative values of the angular

momentum transfer,
4. + 4

Jt Jy c + s - Jo, (2)

provided no measurement is made of either the photoelecron spin or the

orientation of the residual ion. The vector Jt is the angular momentum

transferred between the unobserved initial and final angular momenta in

the reaction, i.e., between the total angular momentum J0 of the target

A and the combined angular momenta of the residual ion A and the

photoelectron spin s, which we denote J cs Jc + s. Allowed values of

jt are determined by conservation of angular momentum J and parity r

in Reaction '(1):

J = Jo + J : J c + s + k (3)

Srro = 7c(-1) (4)

The general form of the differential cross section for Reaction (1)

12
d is [ + P2 (cos)]. (5)

-d= [1 + P2(Cosa)+]. (5)
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Here a is the total cross section, e is the angle between the axis of

linear polarization of the incident light and the direction of the

outgoing photoelectron, and a is the asymmetry parameter. The dynamical

features of the angular distribution are thus contained in 6, which may

assume values in the range -1 8 2, corresponding to distributions

varying from sin2 to cos20. (Though Eq. (5) assumes linearly polarized

incident light, unpolarized, 13 partially polarized, 14 and elliptically

polarized15 incident light produce angular distributions that may be

expressed in terms of 8.)

The resolution of Eq. (5) into contributions corresponding to

alternative values of jt requires firstly that one determine the allowed

values of Jt from Eqs. (2)-(4). Secondly, each value of jt is charac-

terized as being either parity favored or parity unfavored, 2 corres-

ponding to whether the parity change of the target, Trorc, is equal to

+(-I) t or -(-)jt respectively. The total cross section a and the

asymmetry parameter may then be expressed in terms of cross sections

a(jit) and asymmetry parameters B(jt) for a particular value of Jt, as
3

follows:

= a (Jt) (6)

itJcs

fav unf

o = E. { o(jt)fav(jt)fav - E o(jt)unf}. (7)
Jcs t it

In Eq. (7) we have summed the favored and unfavored values of Jt

separately, but as seen from Eq. (11) below, Eq. (7) represents 8
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as a weighted average of (jt). Note that while Eqs. (6) and (7) also

have sums over Jcs (cf. Ref. (3), p. 1981), we do not indicate the

dependence of a(jt) and a(jt) on quantum numbers other than jt until

Section III of this paper. This dependence is hidden in the scattering

.3
amplitudes (jt ) , in terms of which u(jt) and B(jt)are given by:

2j 22
O(jt)fav 2 Jt+l o(t)12 + (j t)2], (8)

.0

2J +1c'(Jt)un f  2J +12t Io(Jt) (9)
0

a(it)fav

(jt+2). I%(jt) 12+ (Jt-_ I- (Jt) 12-3[jt(J t+l [ (Jt)_ (jt) +c. C]
(10)

2

(2Jt+1)[S+(jt) 2 + I (jt)2] O

B(Jt)unf = -1 (11)

In these equations, X is the photon wavelength divided by 2.r and

"c.c" denotes "complex conjugate." The parity favored cross sections

and asymmetry parameters, Eqs. (8) and (10), depend on photoionization

amplitudes §+(jt ), the "±" sign denoting the value of the photoelectron's

orbital angular momentum, k = jt±l. The parity unfavored partial cross

sections in Eq. (9) depend on the amplitudes (Jt), the "o" denoting

S= jt. That the asymmetry parameter for any parity unfavored value of

jt is -l independent of dynamics, as indicated in Eq. (11), is discussed

in Ref. (2). Finally, the LS-coupling form of S-£(jt ) in terms of re-

duced electric dipole matrix elements is derived in Section III. Before
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continuing with this formal development, however, we discuss'in the

rest of this section the physical significance of the angular momentum

transfer and, in particular, its role as a probe of anisotropic

electrons-ion interactions.

The physical significance of angular momentum transfer as a

direct probe of anisotropic electron-ion interactions is illustrated

in Fig. 1. In this analysis it is convenient to think of the photo-

ionization process as having two stages, namely, an initial stage A

of photoabsorption proper, and a subsequent stage B of escape of the

photoelectron from the rest of the atom. The angular momentum transfer

is always equal to the difference between the angular momentum input to

the atom (namely, the angular momentum j = 1 of the electric dipole

interaction) and the angular momentum output from the atom (namely, the

photoelectron's final state orbital momentum z). Thus the angular

momentum transfer, jt= j - k, is the net angular momentum transferred

to (or deposited in) the target by the photoionization process. (Note

that since we consider experiments in which the photoelectron's spin
4+

s is not measured, s is included as part of the angular momentum of the

residual target.) The allowed values of jt,' however, are different in

the two stages of the photoionization process.

In the initial stage A (illustrated in Fig. la) the photoabsorption

imparts j = 1 unit of orbital momentum to the photoelectron, which has

initial orbital momentum Po (in an independent particle model), yielding

a final orbital momentum, ' = + .j . Therefore in stage A the
oy
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angular momentum transferred to the target is

where themagnitude j' has the single value j= o. Furthermore,

owing to parity conservation, 2' = o±1 , and hence j = to is a parity

favored angular momentum transfer.

During the subsequent escape of the photoelectron in stage B

additional angular momentum transfers can arise, within the allowed

range determined by Eq. (2), from anisotropic interactions of the photo-

electron with the rest of the target. In this report we consider only

spin-independent interactions in LS-coupling. Therefore the interaction

in stage B is that between the orbital motion of the photoelectron and

the net orbital motion of the electrons of the residual.ion core, as

illustrated in Fig. lb. This interaction produces a dynamical coupling
4..

of the respective orbital momenta 2' and Lc. Owing to the resulting

angular momentum exchanges t between the photoelectron and the core,

only the total angular momentum L is conserved. (It is because of this

dependence on L that we call these interactions anisotropic.) In
4. 4

particular, the photoelectron orbital momentum can change from 2' to 2

during the departure of the photoelectron from the atom, in which case

the angular momentum transfer is no longer j = -0 but

- = it - k, (13)
4.

as illustrated in Fig. Ic. Note that even if the magnitudes of ' and

Lc remain unchanged, a precession (albeit quantized in units of k) abbut
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the total orbital momentum L is sufficient to produce a change in the

magnitude of jt"

It is at this point that the connection between the present for-

mulation and that of the Cooper-Zare independent particle model4 emerges

most clearly. The Cooper-Zare model treats the residual ion core as

a spectator to the photoionization process. That is, stage B is ignored

altogether, in which case only the single (parity-favored) angular

momentum transfer Jit = to arises. In addition, the amplitudes

(jt = ko ) assume limiting forms (cf. Eq. (35) below)which, when

substituted in Eq. (10), give the Cooper-Zare formula for the asymmetry

parameter. These points are developed in detail in the following

sections.



III. PHOTOIONIZATION AMPLITUDES ,(jt) in LS-COUPLING

The scattering amplitudes (t ) may be expressed as a sum of

reduced electric dipole matrix elements, each one corresponding to a

3
given total angular momentum J:

9(jt )  ((JcS)JcsjTS(jt)toJoJy=l)

= n(c) E(- 1 )Jo- J -I 1

i Z J'

x cs cS) cs J-1P[l]jjoJo) (14)

0 atJo

Here, n(X) 4raMiw/(3X 2), J E (2J+l) 2, o denotes the set of quantum

numbers.necessary to uniquely specify the initial state, and the minus

sign "-" indicates that the final state is normalized according to in-

coming-wave boundary conditions. Our task in this section is to obtain

the LS-coupling form of the reduced electric dipole matrix element in

Eq. (14).

Before specializing to LS-coupling, however, let us consider the

problem in general. The form of the reduced dipole matrix element in

Eq. (14) is incon(enient for numerical calculation for two reasons.

Firstly, the final state ((JC s)JcsJ-j is defined in terms of the

dissociation channel quantum numbers appropriate to the electron-ion

system at infinite separation. In general it is more convenient to
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calculate the electric dipole matrix element for transition to one of

the electron-ion eigenchannel states (aJI, where a denotes the eigen-

channel coupling scheme. Secondly, it is much

more convenient to calculate real matrix elements, and for this reason

a transformation to the standing wave representation is desirable.

For these reasons, we expand the dipole matrix element in

Eq. (14) as follows:3

((Jc s)Jcs Y J-p[l]iaoJo) = i'exp(i(Jc ))

x ((Jcs)JcsZia)Jexp(i6(a)) (aJjIP[lIja 0 J0 ) (15)
a

Each term in the summation in Eq. (15) comprises three elements:

(1) The phase factor i-exp i(a(Jc ) +6(a)), which effects the change

from incoming-wave to standing-wave normalization. Here u(Jc)c

is the Coulomb phase,

O(JCZ) = arg r(t+l-i/v-), (16)

which depends on the binding energy I(J c) of the residual ion fine

structure level J c through the photoelectron kinetic energy c

measured in Rydbergs:

= -KW - I(Jc). (17)

The phase 6(a) is the photoelectron phase shift with respect to

Coulomb waves in the eigenchannel a and represents the effect of

short-range electron-ion interactions.
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(2) The real transformation coefficients ((JS)Jcs)i a) which relate

the eigenchannel coupling scheme to the dissociation channel

coupling scheme.

(3) The real, reduced dipole matrix elements (aJIP[1]| oJo).

Thus far Eq. (15) and all preceding equations are exact for electric

dipole transitions. Approximations must be made, however, in the

representation of the eigenchannels (aJI and their phase shifts 6(a)

as well as in the representation of the initial state JaoJo). We pro-

ceed in the rest of this section to derive the LS-coupling form of

Eq. (15) and then to reduce that further by assuming the use of radial

one-electron wavefunctions appropriate for given term levels of the

ion core and of the electron-ion system.

In LS-coupling a0 and a are given by

a L0 S (18)

a= (Lc2)L (Sc s)S.

Implicit in the definition of ao is that we have an atomic configuration

having a single open shell o N, where to is the orbital angular momentum

and N is the occupation number. Similarly a implicitly indicates the

configuration of the final state after photoionization, which is of the

form Z N-1t. The transformation coefficient in Eq. (15) may be found

either algebraically 16 or graphically 17 to be:
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(((LcSc)JcsZl(Lck)L(S s)S) =

(l)2 cs + (L +Z+L) + (S +s+S) js(-1) cs C i c J LS
C CS

L S L S J (19)
XP

s dcs Jcs A L

Finally, we must evaluate the LS-coupling form of the reduced dipole

matrix element:

(aJIIP[1 ]I o0 J) 0  ((LcZ)L(Sc)S,JIIP[l]IILoS o,Jo). (20)

This evaluation may be carried out graphically,18 but in what follows

we shall proceed algebraically.

The first step in the evaluation of Eq. (20) is to make a

fractional parentage expansion of the initial state,

N-i1~I}NILSoJ) = Z J([o o)Lo(%s)So,Jo)(Zo N-lE ooj LoSo ). (21)
Lo So

Since the ionization process is spin-independent, the second step is to

split off the geometrical dependence of the matrix element in Eq. (20)

on spin and total angular momentumquantumnumbers:19

((L c)L(Sc s)SJ IP[l1]( o o)L ( s)S ,J)

)L+S+J+1^ ^ J o= ('1)L+S+J°+1 J J 6(Sc o ) d(S,S )  (22)
L L S

.((Lc )Ll|P[1]*([o o)Lo )
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to
The third step is^reduce the matrix element of the electric dipole

operator to a one-electron matrix element by factoring out the

geometrical dependence on core and total orbital momenta:20

((L c2)LlIP[ 1 ](o )Lo)

L L 1

=N- (-1 )Lc+to+L+l C Lo  .(Lc,L o) (23)
0 L0 C

x (fllP[1]lo ).

In this equation the factor N2 is a weight factor due to the presence

of N equivalent electrons in the initial state. 18 22 The last step is

to factor the reduced one-electron matrixelement into itsradial and

angular parts:
22

(i IP[]L o) = ( IIC[ ] o)Rc (24)

where the angular part is

z 1 z
( l[1]ii ^)

(z I I = (-1) a (25)
0 0 0

and the radial part is

LSL
RLcScL dr if((LcSc)ek,LSjr)rPi(n zL S jr) (26)

0

Note particularly that this radial part is calculated usirTg radial

wavefunctions dependent dynamically on the angular momentum and spin

quantum numbers of the initial state,of the final .state, and of the

residual ion core.
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Putting Eqs. (21)-(26) together, we find for the reduced dipole

matrix element in Eq. (20):

((Lc)L(S cs )S,JIIp[l]IILoS ,jo) =

N-1 NL +So +Jo +1 ^^ (27
N(0oN LcSCZO I}9NLoSo) (-1) o oLL ~  (27)

J J I L L 1 1
x 0 0 o RLcScL

L L S to k L 0 0 R10 0 C

Finally, substituting Eqs. (15), (19), (20), and (27) into Eq. (14) and

noting that - (-1 -)-Jo = ( we find for the scattering amplitude the

following result:

S(jt) E n(X)N(ZN-1L cSco }NL S ) i-exp. iO(Jc)

JS +s+S s 0 to L SC i
(-1) o J J L S0 0 0 0 o c cs o o cs s

L exp i ^2 L (-1 )2Jcs+So+Z+L (28)
X Eexp i6 cc RccA EX 1
L Z I L

cs o  z 0 1 S J 1J ^2 soJ
x (-1)~ 32{

J 1 t J L Lo S L Jcs

Since we have assumed no dependence of the phase shifts and radial dipole

matrix elements on total angular momentum J, the sum over J in Eq. (28)

may be performed analytically using the Biedenharn identity23 to yield

the desired expression for the scattering amplitude in LS-coupling:
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S (Jt ) = n(')N 2(N- LS ,o }ZN L S )i- exp ia(J) Q(jtJccs)
Z j) 0 . ,0 0 00~ CO tsjc'jCS~

(Lo+Lc+1) + (S +s+S ) + t(Jcso t 1 o
x (-1) aJ Z o 0  0 (29)

0 0 0

LSL LCS L 2 o Lc t Lo c o

x Z exp i6 R LL e Rp . 1 L k 1 L

where

Sc Lc sc Jt Lc Lo

Q ELoS Jcs 1 (30)c'Jcs) 0 L ccs s s J S o J
0 cs 0 0 cs

Though Eq. (29) gives the LS-coupling form of the scattering

amplitude we see that there is a geometrical dependence on the quantum

numbers J and J relating to the fine structure levels of the ioniccs. cLS L ScL
core. (We have neglected any dependence of the phase shifts 6

and radial dipole matrix-elements R on the fine structure levels.)

We consider this dependence on Jcs and J in turn.

All of the dependence on Jcs in Eq. (29) is contained in the
3 -j

geometrical factor (-1) cs oQ(jtJcJcs), which depends additionally

on quantum numbers that are either fixed for a given ionization process

(e.g., s,LoS 0 ,L c,ScJ c ) or enter incoherently in the differential and

total cross sections (e.g., jt in addition to Jcs ). The square of this

factor, with phase +1, enters into the definition of the cross section

(Eq. (6)) and the asymmetry parameter (Eq.(7)), each of which involves

a summation over J cs Accordingly it is convenient to define a new
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quantity,

2 2
( tdc )  E Q(jtJcJcs )2 , (31)

Jcs

which gives the statistical weight with which ionization probability

for a given Jt is distributed among the possible fine structure

levels Jc, since

E Q(jtJc)2 = 1 (32)
0c

Note however that in Eq. (29) there is an additional dynamical depen-

dence on Jc arising from the Coulomb phase o(J( Z). Often, though,

the fine structure separations of the residual ion are not resolved.

Then a(J c ) can be taken as independent of J and the dependence of

the cross sections and asymmetry parameter on Jc can be removed

altogether by application of Eq. (32).

Having obtained the form of the scattering amplitude in LS-

coupling in Eq. (29), it is instructive to return to our discussion

in the last section concerning the role of jt as a probe of anisotropic

interactions, as illustrated in Fig. 1. The allowed values of t are

those consistent with the triangular relations, {LoLcjt} and {Zljt},

implied by the first 6j-symbol in Eq. (29). The coupling of the elec-

tron to the residual ion (cf. Fig. lb) is reflected in the dependence
LcScL LcSCL

of the phase shifts 6 and dipole matrix elements R. on the

total angular momentum of the electron-ion complex. Only when these

phases and matrix elements do not depend on L (i.e., when the electron-



19

ion interaction is isotropic) is jt restricted to the single value

t..= o. For in this case the dynamical weight factors in Eq. (29) may

be extracted from the summation, since

LcScLL LcScL isotropic
exp i6I. R - ) exp i6 R , (33)

interaction

and the summation over L may be performed analytically:

L c t Lo Lc o 2
SL2 c = 2 6(jt,yo) (34)
L x 1 L Z. 1 L

The scattering amplitude then depends only on the final orbital angulair

momentum t of the photoelectron,

(jt=o) = i'exp i(ac +6 )kto ( O)R (35)
000

where the proportionality constant indicates that we have not written

down all the other factors from Eq. (29) which depend on quantum numbers

that are fixed for a given photoionization process. These

other factors do not contribute to the asymmetry parameter-in Eq. (10)

since they occur in both numerator and denominator and thus cancel out.

Setting jt=to in Eq. (10) and substituting the scattering amplitude

from Eq. (35) leads to the asymmetry parameter (o ) of the Cooper-
0

4Zare independent particle model.
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IV. APPLICATION TO SULFUR PHOTOIONIZATION

To illustrate the theory developed in the last two sections we

calculate the angular distribution of photoelectrons ionized from

atomic sulfur according to the reaction,

S(3p4 3P) + y + S (3p3 4S, 2, 2P) + e- (36)

For each of the residual ion terms LcSc we present in Table I the

allowed values of photoelectron angular momentum Z, angular momentum

transfer it, reaction parity (where parity change = +1 is favored and

parity change = -1 is unfavored), and the allowed values of total

angular and spin momenta for the electron-ion system. We see that

the 4S ion term has only the single angular momentum transfer

2 2jt = o = 1 but that the 20 and 2P ion terms both have other values

of jt including parity unfavored values. Notice that for the 2D and
2 more

P ion terms the k = 2 states have two orallowed values of LS, implying

that there will be interference between phase shifts belonging to

different final state channels.

For donciseness we shall concentrate in what follows on the

photoionization reaction leading to the 2D ion term since it shows

the.strongest anisotropic electron-ion interactions. For this ion

term the scattering amplitudes (jt) in Eq. (29) for the allowed

values of Z and Jt listed in Table I are:
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-3
Is(1) = C Lei (as+6s( 3D))R 3D) (37a)s 3 F

2d() = C id ei6d(3S)R 3S) + ei6d( 3P R 3P)+ 7id(3D) Rd( 3D)]
P C 4 3 L REd(d e

(37b)

Sd(2) = C .eod[ -ld3 3 S) ei d6d(3P)R Ecd3P) + eid3D)Red( 3D)]
53 R~( 4 d1

. (37c)
_ • 2 i adl ei~d( S) 3 3)+1ed(D 3

Sd(3) C eiOd[e 3S)R d3S) - e"d(3P)Rd 3P  +  ed(3D)d3 )]

d = 5  1d ( S3) 2 Id 61 e d(D

(37d)

In Eq. (37) C denotes those constant factors in Eq. (29) that are common

to all channels, s and d denote k = 0 and k = 2, and REd( 3S), for exampleLcScL 2

denotes the radial dipole matrix element R cc for L S = 2D, L = 0,
peC c

and i = 2. Note that we have ignored the dependence of the Coulomb

phase shifts as and ad on ion core fine structure levels Jc' ,.as

discussed at the end of the previous section.

The asymmetry parameter for photoionization to the 2D ion term is

given by Eqs. (7)-(11):

319d(1) 2 - 3*2 [ d(1)Ss(1) +c.c.] - 519d(2)I 2 + 21Sd(3)I2  (38)8 = (38)

31s(1)12 + 31Sd(1)1 2 + 5ISd(2)1 2 + 71d(3)
2

In Eq. (38) the common factor C in Eq. (37) cancels in numerator and

denominator. As pointed out in the last section, Eq. (38) reduces to
4 LcScL

the Cooper-Zare result for 4 when the phase shifts 6 and radial
LSL

dipole matrix elements R became independent of LcScL. It is of
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interest to see how this occurs for this particular example. Note

first that d(2)-O and Sd(3)+O in Eqs. (37c) and (37d) when the phase

shifts and dipole matrix elements become identical. We also

see that the squared modulus of each of these scattering amplitudes,

having Jt o = 1, is non-zero partly because the resulting factors

cos(6d( 3S) - d(3P)), etc., in the cross terms are not unity. These

same factors also arise in cross terms of ISd(1)1 2 and are partly

responsible for changing the value of this modulus from what its

(non-zero) value would be in a Cooper-Zare model calculation. For

these reasons we regard the magnitude of phase shift differences
LcScL LcScL'

6 - to be an indication of the strength of anisotropic

electron-ion interacticns and hence of the validity of the Cooper-

Zare model for .

The scattering amplitudes in Eqs. (37a) and (37b),having

jt =  o = 1, contribute to the cross section and the asymmetry

parameter $ whether the phase shifts and matrix elements are identical

or not. The scattering amplitudes in Eqs. (37c) and (37d), however,

having Jt Xo = 1, contribute only when the phases and matrix elements

are different from one another. An index of the strength of angular

momentum transfers jt to is thus the fraction [a-cr(jt=ko)]/o where

a is the photoionization cross section and o(jt=ko) is the partial

cross section corresponding to Jt = to. For photoionization to the

2 ion term of sulfur this ratio is expressed as:D ion term of sulfur this ratio is expressed as:
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5Sd(2)12 + 7ISd(3)12[o-o(1)]/o =: (39)

31 s(1)2 + 31 d(1) 2 + 51Sd(2) 2 + 71Id(3)1 2

To evaluate Eqs. (37)-(39) we used continuum Hartree-Fock(HF)

wave functions obtained by solving the equations given by Dalgarno,

Henry, and Stewart24 using methods discussed fully by Kennedy and

Manson. 6 These continuum wave functions depend on both the ionic

term level and the total orbital angular momentum. Discrete HF

single-particle orbitals for the neutral atom and for the ion were

obtained from the tabulation of Clementi. 25

For comparison, we have also carried out a Cooper-Zare type of

calculation employing Herman-Skillman26 (HS) wave functions. The

continuum HS wave functions are calculated in the average sulfur

potential appropriate to the ground configuration as tabulated by

Herman and Skillman.26 These wave functions depend neither on the

ion core level LcSc nor on the total angular momentum L and thus the

phase shifts and radial dipole matrix elements depend only on ek, and

Eq. (37) reduces to:

s(1) = C ei(as+6s)RCs (40a)

Sd() = C. ei(ad+6d)Rd (40b)

Sd(2) = (3) = 0 (40c)d
Vd2) §d S(3) :0 (40c)
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Notice that since the HS continuum wave functions do not depend on the

ionic term level the asymmetry parameters for each ion term, when

plotted versus photoelectron kinetic energy c, are identical. Discrete

wave functions for both the ion and the atom were taken to be the

tabulated HS neutral-atom discrete wave functions.
LcScL

In Fig. 2 we have plotted HF phase shifts 6LSd for the ionic

term level 2D as a function of photoelectron kinetic energy c. The

three allowed values of L are listed in Table I. These phase shifts

differ by as much as 0.7 radian indicating that anisotropic electron-

ion interactions are significantly large.

In Fig. 3 we have plotted the three asymmetry parameters corres-

ponding to the three alternative ionic term levels resulting from

photoionization of the sulfur atom. Contrary to the Cooper-Zare model,

these asymmetry parameters are significantly different from one another

when plotted as a function of photoelectron kinetic energy. In this

plot the length formula for electric dipole transitions has been used

27since this is the correct one for HF calculations. 27 In Table II,

however, we list calculated HF asymmetry parameters using both length

and velocity formulas for the dipole matrix elements in order to show

that for most energies listed the differences between the asymmetry

parameters for different ion terms are larger than the length and

velocity difference for a given ion term. We also list for comparison

the 8 parameter calculated using HS wave functions and the Cooper-Zare
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formula for 5 (i.e., Eq. (40)). The HS wavefunctions are quite

different from the HF wave functions and thus the HS asymmetry param-

eter does not seem to be an "average" of the HF asymmetry parameters

at low energies.

In Table III we have plotted HF and HS cross sections for

photoionization of sulfur. Note that the HS cross section is a total

cross section and would correspond to the sum of the three HF partial

cross sections at a given photon energy. However, we have plotted the

HF partial cross sections as functions of photoelectron kinetic

energy for comparison with Table II. Comparing Tables II and III, we

see that the largest differences in the asymmetry parameters occur for

energies 1.5Ry e 2.1Ry. This is just before the Cooper minima
28

in the cross sections, which occur in the region 2.1Ry 5 e 5 2.8Ry.

The cross.sections in the region 1.5Ry 5 e 5 2.1Ry are of the order

of 10-18 cm2 and thus measurement of for the different thresholds

should be experimentally possible, if not for sulfur then for some

other element. Simply put, we wish to emphasize that the differences

we have found between the asymmetry parameters for the different ionic

term levels are not dependent on being at a cross section minimum.

Indeed, as seen in Fig.. 3 and Tables II and III there are measurable

differencesbetween a(3p-4s) and ( 3p 2P) in the energy range

O.lRy 5 E 5 0.8Ry, where the cross sections are of the order of

10-17 cm2
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Finally in Fig. 4 we examine the influence of angular momentum

transfers jt f to on the asymmetry parameter and partial cross section

for photoionization to the 2D ionic term level. The solid line

represents the asymmetry parameter given by Eq. (38) and plotted also

in Fig. 3. The dashed line represents 8 calculated according to

Eq. (38) but setting Sd(2) = Sd(3) = 0. Note that the result is not

the Cooper-Zare expression for since we still use Eq. (37b) for

Sd(1) and thus the dependence of phase shifts and radial dipole matrix

elements on LCSCL is still important. We see from Fig. 4 that values

of jt to = 1 lower a as much as 0.2 units in the neighborhood of

E = l.ORy. The dot-dashed curve is a plot of the ratio [c-a(l)]/a

given in Eq. (39). Values of jt to = 1 contribute as much as 8%

to the partial cross section in the neighborhood of c 1.5Ry.
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V. DISCUSSION AND CONCLUSIONS

We have shown that anisotropic electron-ion 
interactions in

atomic sulfur lead to measurable differences 
between photoelectron

angular distribution asymmetry parameters 
corresponding to alternatiV2

ionic term levels. Similar effects are expected for most 
open-shell

atoms. A measure of the strength of anisotropic 
electron-ion inter-

actions is the difference between phase 
shifts for alternative final-

state channels. In atomic sulfur these phase shift differences 
are as

large as 0.7 radian. A separate study of atomic oxygen
7 found phase

shift differences of only 0.2 radian 
and asymmetry parameters that

were nearly identical for each ionic term level. However, atomic oxygen

andthe other second row elements are 
regarded as exceptions, since

they are too light to have strong 
interactions, and atomic sulfur is

regarded as more typical of open-shell atoms in general. Our choice

of atomic sulfur for study was purely 
a matter of convenience. We know

of no experimental data on photoelectron angular distributions 
for an

open-shell atom. We emphasize, however, that we expect 
the magnitude

of the difference between asymmetry parameters 
and the magnitude of

the cross sections to be experimentally measurable 
for many open-

shell atoms.

For the particular case of atomic sulfur 
we have found that

angular momentum transfers jt o, which do not arise in the Cooper-

Zare model, 4 contribute only a small but nevertheless significant



28

amount to the asymmetry parameters and to the cross sections. We

simply do not know whether this will hold true for other open-shell

atoms. The contributions to the asymmetry parameter from angular

momentum transfers Jt = o are, however, quite different from those in

the Cooper-Zare model, which has only jt = o contributions, since

the phase shift differences are so large in the different final-state

channels (cf. Eqs. (37b) and (40b)).

For closed-shell atoms our formulas reduce rigorously to those

of the Cooper-Zare model. Unfortunately nearly all experimental

measurements of photoelectron angular distributions known to us are

for closed-shell atoms. Considering the importance of photoelectron

angular distributions to such diverse areas as radiation dosimetry

(e.g., 6-ray spectrum)29 and the physics of the upper atmosphere

(e.g., conjugate point phenomena)30 as well as to theoretical physics,

as emphasized in this paper, we feel that experimental data on photo-

electron angular distributions for open-shell atoms would be most

valuable.

Lastly, we point out that our formulas for photoelectron angular

distributions have been derived for any electron-ion coupling scheme,

but worked out in detail only for LS-coupling. In general the electron-

ion interaction is best described in an intermediate coupling scheme,

particularly in semi-empirical calculations.3 Nearly all ab initio

atomic calculations, however, use the LS-coupling scheme and it is for
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these calculations that our formulas have been worked out most fully.

While we.have calculated phase-shifts and dipole matrix elements in

HF approximation, other more accurate procedures (e.g., many-body

perturbation theory, random-phase approximation, etc.) may be used to

compute these quantities for use in our formulas for the asymmetry

parameter.. Similarly, while we have ignored fine structure splittings

of the ionic core, these may easily be included in angular distribution

calculations using our formulas as discussed at the end of Section III.
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Table 1: Allowed values for the ion core term level (LcS ),

photoelectron orbital angular momentum (t), angular

momentum transfer (jt), reaction parity (T (-)),

and total orbital and spin angular momenta (LS) for

the reaction S(3p 4 3P)+hv-S+(3p 3 4S, 2D, 2P) + e

LcSc Jt Parity LS

S 0 1 +1 (favored) 3S

S 2 1 +1 (favored) 3D

2D 0 1 +1 (favored) 3D

2D 2 1 +1 (favored) 3D, 3P, 3S

2D .2 2 -l (unfavored) 3D, 3P, 3S

2D 2 3 +1 (favored). 3D, 3P, 3S

2P 0 1 +1 (favored) 3p

2P 2 1 +1 (favored) 3D, 3p

2P 2 2 -l (unfavored) 3D, 3p
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Table II. HF asymmetry parameters for the reactions S(3p
4 3P) + hv +

S (3p3 4S, 2D, 2P) + e as a function of photoelectron kinetic

energy e using dipole length (velocity) formula and comparison

with HS asymmetry parameter.

E(Ry) (3P 4S) B(3P 2D) a (3p 2P) HS 

0.00 0.144 (0.054) 0.176 (0.248) 0.274 (0.360) 0.35

0.05 0.551 (0.495) 0.584 (0.614) 0.705 (0.739) 0.74

0.10 0.769 (0.734) 0.805 (0.814) 0.942 (0.950) 0.96

0.20 1.052 (1.048) 1.090 (1.082) 1.248 ( 1.229) 1.25

0.40 1.365 (1.407) 1.402 (1.402) 1.594 ( 1.564) 1.61

0.60 1.543 (1.619) 1.574 (1.604) 1.779 ( 1.761) 1.78

0.80 1.659 (1.761) 1.670 (1.735) 1.851 ( 1.856) 1.82

1.00 1.734 (1.849) 1.693 (1.782) 1.793 ( 1.820) 1.68

1.25 1.772 (1.860) 1.581 (1.640) 1.472 ( 1.488) ----

1.50 1.714 (1.665) 1.234 (1.131) 0.847 ( 0.775) 0.10

1.80 1.408 (0.944) 0.497 (0.185) 0.044 (-0.078) -0.24

2.10 0.724 (0.016) -0.127 (-0.270) -0.250 (-0.268) -0.02

2.30 0.211 (-0.210) -0.223 (-0.207) -0.173 (-0.136) 0.18

2.60 -0.108 (-0.029) -0.029 ( 0.076) 0.094 ( 0.155) 0.44

2.80 -0.013 ( 0.189) 0.170 ( 0.273) 0.281 ( 0.339) 0.60

3.00 0.177 ( 0.393) 0.360 ( 0.447) 0.450 ( 0.500) 0.74

4.00 0.933 ( 1.003) 0.972 ( 0.989) 0.996 ( 1.009) 1.10

8.00 l.,576 ( 1.526) 1.513 ( 1.523) 1.522 ( 1.526) 1.54

15.00 1.697 ( 1.629) 1.614 ( 1.636) 1.622 ( 1.636) 1.62

30.00 1.582 ( 1.561) 1.534 (1.564) 1.537 ( 1.564) 1.54
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Table III. HF cross sections for the reactions S(3p 4 3P) + hv +

S (3p3 4S, 2D, 2p) + e- as a function of photoelec-

tron kinetic energy F using dipole length (velocity)

formula and comparison with HS cross section. All

cross sections are in units of 10- 18 cm2

E(Ry) (3p 4 S) a (3 P 2D) a (3p .2 P) o(HS)
0.00 13.82 (8.92) 27.43 (19.23) 20.87 (15.40) 58.00
0.05 14.61 (9.11) 28.00 (19.18) 20.78 (15.04) 58.78
0.10 15.03 (9.10) 27.46 (18.42) 19.73 (14.04) 57.24
0.20 15.04 (8.65) 24.21 (15.65) 16.03 (11.09) 48.33
0.40 12.85 (6.85) 15.42 ( 9.38) 8.43 (5.62) 24.60
0.60 9.47 (4.75) 8.70 ( 5.05) 4.01 ( 2.62) 11.84
0.80 6.27 (2.97) 4.67 ( 2.61) 1.92 ( 1.23) 4.73
1.00 3.84 (1.73) 2.47 ( 1.34) 0.95 ( 0.61) 2.00
1.25 1.96 (0.82) 1.14 ( 0.59) 0.44 ( 0.27) -----
1.50 0.97 (0.38) 0.56 ( 0.29) 0.23 (0.15) 0.58
1.80 0.42 (0.17) 0.29 ( 0.17) 0.15 ( 0.10) 0.52
2.10 0.21 (0.11) 0.20 ( 0.15) 0.13 ( 0.10) 0.57
2.30 0.16 (0.10) 0.19 ( 0.16) 0.13 ( 0.10) 0.61
2.60 0.14 (0.12) 0.20 ( 0.18) 0.14 ( 0.12) 0.68
2.80 0.14 (0.13) 0.21 ( 0.19) 0.15 ( 0.12) 0.71
3.00 0.15 (0.14) 0.22 ( 0.20) 0.15 ( 0.13) 0.75
4.00 0.22 (0.17) 0.27 ( 0.23) 0.17 (0.14) 0.80
8.00 0.17 (0.12) 0.18 ( 0.15) 0.11 ( 0.09) 0.42
15.00 0.05 (0.04) 0.06 ( 0.05) 0.04 (0.03) 0.15
30.00 0.01 (0.01) 0.01 ( 0.01) 0.01 ( 0.01) 0.03
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FIGURE CAPTIONS

Fig. 1. Illustration of the origin of multiple angular momentum transfers

in atomic photoionization reactions. See text for discussion.

LCScL 2Fig. 2. Hartree-Fock d-wave.phase shifts 6 d for the D sulfur ion

term versus photoelectron kinetic energy e for alternative allowed values

of L. Solid line, L = 0 [i.e., the state 3p3(2D)ed 3S]; dashed line,

L = 1(3P); dot-dashed line, L = 2(3D).

Fig. 3. Asymmetry parameters B(3P+L cS ) for the photoionization reactions

S(3p 4 3p) + S(3p3 LcSc) + e as a function of photoelectron kinetic

energy. Solid line, 4S ionic term; dashed line, 2D; dot-dashed, 2p.

Fig. 4. Dependence of the asymmetry parameter S(3p2 0) and cross section
o(3p 2D) for the 2D ion term of sulfur on angular momentum transfers

Jt o as a function of photoelectron kinetic energy. Left-hand scale

refers to (1) the solid line denoting S and (2) the dashed line denoting

(t = to = 1), both for the 3p2D transition. Right-hand scale refers

to the dot-dashed line which denotes the ratio [a-o(jt=l)]/ for the

3p20 transition.
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